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Abstract. This article approaches scientific software architecture from three analytical paths. Each path examines discrete time
advancement of multiphysics phenomena governed by coupled differential equations. The new object-oriented Fortran 2003
constructs provide a formal syntax for an abstract data type (ADT) calculus. The first analysis uses traditional object-oriented
software design metrics to demonstrate the high cohesion and low coupling associated with the calculus. A second analysis
from the viewpoint of computational complexity theory demonstrates that a more representative bug search strategy than that
considered by Rouson et al. (ACM Trans. Math. Soft. 34(1) (2008)) reduces the number of lines searched in a code with λ
total lines from O(λ2) to O(λ log2 λ), which in turn becomes nearly independent of the overall code size in the context of ADT
calculus. The third analysis derives from information theory an argument that ADT calculus simplifies developer communications
in part by minimizing the growth in interface information content as developers add new physics to a multiphysics package.
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1. Introduction

The central activity in object-oriented (OO) soft-
ware design involves decomposing a problem into a
set of abstract data types (ADTs). These abstractions
encapsulate private data tightly coupled to public pro-
cedures that operate on that data. A recurring strategy
across numerous scientific software projects over the
past decade was to choose ADTs that closely mimic
continuous mathematical abstractions such as scalar,
vector, and tensor fields [5,7,10,15]. By further defin-
ing a set of algebraic, integral, and differential oper-
ators, such strategies support an ADT calculus that
hides discrete numerical algorithms behind interfaces
to continuous ones. As noted on the Sundance project
home page, this strategy lets software abstractions re-
semble blackboard abstractions.1 One expects the re-
sult to be programs that exhibit a degree of elegance in
some sense, which naturally generates two fundamen-
tal questions: to what degree and in what sense? This
article presents steps towards answering these ques-
tions.

1http://www.math.ttu.edu/~klong/Sundance/html/.

The stated aim requires developing quantitative, an-
alytical ways to describe scientific software architec-
tures. Attempts to do so in the broader software engi-
neering community have met with some controversy
[3,17,20]. Much of the controversy surrounds the util-
ity of software design metrics as:

1. Fault rate predictors,
2. Programmer productivity evaluators, and
3. Development time estimators.

For example, in programs with modular architec-
tures, one might expect fault rates to increase monoton-
ically with module size; yet Fenton and Ohlsson [2] de-
tected nearly constant fault rates independent of mod-
ule size in their study of two releases of a major
telecommunications software project. In fact, the only
significant departure from this behavior occurred at the
smallest module size, where the fault rates dropped
precipitously in one release and spiked upwards in the
subsequent release. They hypothesized that the latter
behavior stemmed from the increased ratio of interface
content to body content for the smallest modules, so
that complexity in the body had been pushed into the
interface.
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As tools for evaluating productivity, design met-
rics suffer from potential manipulation by program-
mers and misinterpretation by their managers. To use
the simplest example, were one to use the much ma-
ligned source lines of code (SLOC) as the measure of
productivity, even novice programmers could manipu-
late the result by inserting dead code or splitting steps
that could easily be combined. On the manager’s side,
a tendency to task the more experienced developers
with the more difficult problems might yield the lowest
SLOC for the most adept people.

The use of design metrics to estimate development
time provokes possibly the most pessimistic backlash.
For example, Lewis [9] argued that neither a pro-
gram’s size nor its complexity can be objectively es-
timated a priori – and likewise for its development
time and the absolute productivity of its developer.
Lewis backed these claims with algorithmic complex-
ity theory. The basic argument regarding program size
and complexity follows: for a string s, the associated
algorithmic complexity K(s), defined as the shortest
program that produces s, is provably non-computable.
Taking s to be the desired program output suggests that
the smallest program (including input data) that pro-
duces that output cannot be estimated. Alternatively,
easily derived upper bounds on program size, such
as the size of a program that simply prints the out-
put string, do not prove useful. The lack of useful,
computable bounds on program size implies a simi-
lar statement for development time since it depends on
program size as well as a similar statement for pro-
grammer productivity as measured by program size
divided by development time. Ultimately, Lewis con-
cludes that even approximate estimations cannot be
constructed theoretically and must therefore be judged
purely on empirical grounds.

None of the above precludes calculating algorith-
mic complexity, or other formal properties of software,
within restricted domains wherein certain program
properties can be guaranteed. For example, Chaitin [1]
demonstrated “how to run algorithmic information the-
ory on a computer” by restricting the program to being
expressible in so-called “pure LISP”. In this context,
one assumes programs to be self-delimiting – that is to
contain information about their lengths. In such a sys-
tem, one can construct an arbitrarily large number of
digits of the program’s algorithmic complexity.

Somewhat ironically, Kirk and Jenkins [8] provided
empirical evidence of the usefulness of the very entity,
algorithmic complexity, that Lewis employed in argu-
ments against theoretical estimates. They took the con-

catenation of a compressed piece of source code and
the compression software that produced it as an upper
bound on K(s). Furthermore, they used code obfusca-
tors to estimate the worst-case complexity and com-
pare this with the complexity added by the developer
during a revision cycle. Obfuscators alter source code
in ways that make it more difficult for humans to un-
derstand and more difficult to reverse engineer. Us-
ing the compression software bzip2,2 they estimated
the character symbol entropy of obfuscated files at
varying levels of obfuscation. Based on their results,
they proposed analogies between their information en-
tropy measures and thermodynamic entropy. They fur-
ther suggested that these analogies could lead to study-
ing material-like phase transitions as software becomes
more brittle through stronger coupling between mod-
ules.

A common activity in computational applications of
complexity theory is the derivation of so-called poly-
nomial time estimates for the completion of various
tasks. Inspired in part by this work, Rouson et al.
[14] derived a polynomial time estimate for the com-
pletion of one process that impacts productivity: the
bug search. This approach draws additional inspiration
from Shalloway and Trott [18] and Oliveira and Stew-
art [12], who made extremely similar comments in two
very different application domains: OO design patterns
and procedural scientific programming. Both pairs of
authors commented that programmers typically spend
more time searching for bugs than fixing them. Com-
bining an artificially constructed bug search algorithm
with empirical data on statically detectible fault rates
in scientific C and Fortran 77 programs [6], Rouson et
al. [14] demonstrated that the time to find all bugs in
procedural programs with globally shared data grows
quadratically with SLOC. In this context, global data
sharing might result from using Fortran COMMON
blocks or simply from passing solution vectors be-
tween procedures instead of hiding them behind ADT
interfaces.

Rouson et al. [14] further demonstrated that con-
structing an ADT calculus renders the aforementioned
quadratic polynomial roughly constant by freezing the
relevant SLOC at its value for a single ADT and then
holding SLOC nearly constant across ADTs as the
software project grows. The current paper builds upon
that work. Section 2 provides context by discussing
a target set of applications. In these applications, one
desires to construct an ADT calculus for purposes of

2http://www.bzip.org.
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writing coupled ordinary and partial differential equa-
tion solvers. Section 3 analyzes such a calculus. Sec-
tion 3.1 discusses two object-oriented design metrics:
coupling and cohesion. Section 3.2 broadens the ap-
plicability of the bug search metric by analyzing a
more realistic search algorithm: the bisection method.
Section 3.3 develops novel information theoretic argu-
ments that offer the first opportunity to quantify an-
other development-time process: developer communi-
cations. Section 4 summarizes the conclusions from
this study.

2. Problem formulation and methodology

2.1. Discrete time advancement

The problems of interest for the current work involve
solving coupled sets of linear and nonlinear, ordinary
differential equations:

d
dt

�V = �f (�V ), (1)

where �V = (V1, V2, . . . , VN )T is a N -dimensional so-
lution vector. In practice, this vector might comprise
the complete state space of some dynamical system or
it might represent a finite-dimensional approximation
to an infinite-dimensional system such as a set of cou-
pled partial differential equations (PDEs). For exam-
ple, the elements of �V might be nodal values at the ver-
tices of a multidimensional grid overlaying the solution
domain for a set of PDEs.

Discrete time advancement schemes make various
approximations to the integration of Eq. (1) over a
small, finite time step Δt ≡ tn+1 − tn:

�V n+1 = �V n +
∫ tn+1

tn

f (�V ) dt, (2)

where �V n and �V n+1 are the solution vector at times tn
and tn+1, respectively. One can derive most commonly
employed numerical integration algorithms from
Eq. (2) by an appropriate choice of a polynomial ap-
proximation for the components of �f . For example,
first- and second-order Runge–Kutta schemes result
from constant and linear approximations interpolating
each component of �f (�V n) and �f (�V n+1). The first-
order scheme is:

�V n+1 = �V n + f (�V n)Δt, (3)

while the second-order scheme is:

�V n+1/2 = �V n + f (�V n, t)
Δt

2
(4a)

�V n+1 = �V n + f

(
�V n+1/2, t +

Δt

2

)
Δt. (4b)

Additionally, one can derive multistep explicit
(Adams–Bashforth) and implicit (Adams–Moulton)
schemes by judicious choices of polynomial order and
interpolation points.

2.2. Constructing an ADT calculus

A broad swath of scientific simulation problems fall
under the heading of multiphysics modeling, that is the
coupled integration of multiple interdependent math-
ematical models from related physics sub-disciplines.
Rouson et al. [15] outlined a set of domain-specific de-
sign patterns targeting such applications. Figure 1 de-
picts a Unified Modeling Language (UML) class di-
agram using their Puppeteer and semi-discrete model
patterns to construct a model for solid particle trans-
port in electrically conducting, magnetohydrodymic
(MHD) flows such as the dusty plasmas found in nu-
clear fusion tokamaks and the semi-solid dispersions
found in liquid metal processing. In such settings, the
particle3 class likely solves a drag law for discrete
particle positions and velocities. The fluid class solves
the Navier–Stokes questions for the fluid velocity and
pressure fields, and the magnetofluid class solves
the magnetic induction equation, a form of Maxwell’s
equations, for the magnetic vector field.

The dusty_plasma class plays the role of the
puppeteer pattern [15], manipulating a set of puppet
classes by delegating all defined arithmetic to those
puppets and mediating all communication between
them. For example, dusty_plasma queries the par-
ticles for their spatial locations. It then queries the
magnetofluid for its velocity at those locations and
passes the response back to the particles for calcula-
tion of each particle’s drag. Finally, dusty_plasma
queries the particles for their drag forces and passes the
response to the magnetofluid which can then in-
corporate an equal and opposite reaction force into its
Navier–Stokes calculation.

The integrable_model4 class holds an abstract
type containing a set of deferred-binding, type-bound5

3We use the Courier New font for code excerpts.
4In keeping with the UML standard, we use italicized boldface

type for abstract classes.
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Fig. 1. UML class model for a sample multiphysics application: a dusty plasma that aggregates zero or more particles and one magnetofluid.
Numbers near connectors indicate the multiplicity of instances at that end of the connection with “0..” indicating zero or more. Italicized boldface
indicates an abstract type.

procedures corresponding to a set of abstract inter-
faces. These procedures specify a set of algebraic and
differential operators for use in the integrate pro-
cedure, which accepts a dynamically typed argument
that it advances one time step using defined operators.6

The Appendix contains a sample implementation of
this class using the new object-oriented constructs of
Fortran 2003. For convenience, the integrate pro-
cedure is also provided here:

subroutine integrate(integrand,dt)
class(integrable_model) :: integrand
real, intent(in) :: dt
integrand = integrand &

+ integrand%d_dt()*dt
end subroutine

where integrand represents a polymorphic entity
whose actual type is resolved at runtime and required

5When encapsulated in a Fortran module construct, Fortran 2003
derived types are roughly equivalent to C++ classes and abstract
types are analogous to C++ virtual classes where deferred-binding
type-bound procedures correspond approximately to virtual member
functions.

6Fortran defined assignments and operators correspond approx-
imately to what most other OO languages refer to as “overloaded
operators”.

to be an extension7 of the integrable_model ab-
stract type and where the derived type component se-
lector “%”8 is used to invoke the type-bound procedure
d_dt().

The fourth line in the integrate() procedure
takes advantage of the defined operators “+” and “*”,
the defined assignment “=”, and the time differenti-
ation method “d_dt()”, all of which must be im-
plemented by any class that extends integrable_
model. The time differentiator d_dt() evaluates
�f (�V ) in Eq. (1). The same defined operators, assign-
ments and type-bound procedures could be used to
write any order Runge–Kutta method. The second-
order method of Eqs (4a) and (4b), for example, could
be written as:

integrand_half &
= integrand &

+ integrand%d_dt()*(dt/2.)
integrand &

= integrand &
+ integrand_half%d_dt()*dt

7Fortran 2003 type extension represents Fortran’s inheritance
mechanism, sharing some features with Java such as the prohibition
against multiple inheritance and some features with C++ such as the
inheritance of overloaded operators.

8The Fortran component selector “%” corresponds to the “.” mem-
ber selector in most OO languages.
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where integrand_half would also be required
to be a type that extends the integrable_model
type.

Any class that implements the desired operators,
assignment and differentiation method thereby sup-
ports an ADT calculus. In one sense, the definition
of such a calculus might be thought of as the con-
struction of a domain-specific language. Given a set
of single-physics classes such as particle, fluid,
and magnetofluid, application programmers can
rapidly assemble an appropriate puppeteer along with
new time integrators based on the provided opera-
tors. The internal details of each single-physics model
would likely involve additional arithmetic and dif-
ferential operators to calculate the time derivative
d_dt(). For example, that process might involve cal-
culating various spatial derivatives, integrals, sums,
products and differences between the dependent vari-
ables of each class, thus expanding the calculus and the
types of variables on which it operates [14].

The remainder of this article analyzes ADT-
calculus-based discrete time advancement in terms of
metrics inspired from three domains: OO design, com-
putational complexity theory and information theory.
The aforementioned particle-laden MHD solver pro-
vides a context for these analyses and serves as a pro-
totype multiphysics problem. Each analysis addresses
the question of scalable development in the sense of
scaling up the number of single-physics subsystems
in some multiphysics simulation. The analyses focus
primarily on the high-level code architecture, treating
only briefly any details internal to a specific class or
procedure. The reader is directed to references [14–16]
for addtional implementation details, including sample
code.

3. Analysis

3.1. Object-oriented design metrics

The proponents of OO design metrics aim to im-
prove software engineering practices by encouraging
code designs that are coherent, flexible, and robust. In
many regards, metrics share these goals with OO de-
sign patterns, which can be defined as common solu-
tions to recurring problems in OO software construc-
tion. Not surprisingly then the adoption of patterns has
a tendency to foster trends in certain metrics. Specif-
ically, many design patterns generate high cohesion
within an ADT and low coupling between ADTs.

The term “cohesion” describes the extent to which
an ADT’s procedures relate to each other in purpose.
Stevens et al. [21] ranked various types of cohesion
from weakest to strongest. Coincidental cohesion, the
weakest form, occurs when parts of a system have no
significant relationship to each other. Functions in clas-
sical, procedural mathematics libraries exhibit coinci-
dental cohesion in that most procedure pairs have in
common only that they evaluate mathematical func-
tions. Functional cohesion, the strongest form, occurs
when each part of a system contributes to a single task.

In the discrete time-advancement problem, each of
the operators and type-bound procedures contributes
to time advancement. This guarantees functional cohe-
sion at least in a minimal ADT that implements only
the requisite calculus.

The term “coupling” describes the extent to which
different ADTs depend on each other. As with cohe-
sion, one can rank types of coupling from loosely cou-
pled to tightly coupled. Authors typically rank data
coupling as the loosest form [13,17]. Data coupling oc-
curs when one part of a system depends on data from
another part. Control coupling, a moderately tighter
form, arises when the logical flow of execution in one
part depends on flags passed in from another part.
Content coupling, which typically ranks as the tightest
form of coupling [13,17], occurs when one violates an
abstraction by providing one ADT with direct access
to the state or control information inside another ADT.
An especially egregious form of content coupling can
occur when it is possible to branch directly into the
middle of a procedure inside one ADT from a line in-
side another.

Since a developer can write the time advancement
expressions in Section 2.2 without any information
about the state or flow of control inside the objects and
operators employed, the construction of an ADT calcu-
lus allows for strict adherence to data privacy. Adopt-
ing this practice precludes content coupling. Further-
more, in the discrete time advancement codes of Sec-
tion 2.2, the only procedure arguments are instances
of the class9 being advanced. These are implicit argu-
ments that arise, for example, when the compiler re-
solves the statement

integrand = integrand &
+ integrand%d_dt()*dt

into a procedure call of the form10

9This article uses “class” and “abstract data type” synonymously.
10The ampersand (&) is the Fortran line continuation character

character.
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call assign &
(integrand,add(integrand,
multiply(integrand%d_dt(),dt)))

where assign(), plus() and multiply() are
the defined assignment, addition and multiplication
procedures, respectively. Thus, in the absence of any
flags internal to the derived type itself, no control cou-
pling arises when employing an ADT calculus. This
leaves only the loosest form of coupling: data coupling.
At least in terms of the top-level semantics, even data
coupling is kept to a minimum given that all operators
are either unary or binary, so at most two arguments
can be passed.

Inside the time differentiator d_dt(), some op-
portunities arise for minimal control coupling. One
is likely to pass a coordinate direction to any par-
tial derivative operators and then to branch inside the
derivative procedure based on the passed direction.
Even this, however, could be eliminated by defining
separate functions for the directional derivatives in
each coordinate direction. Thus, it appears the con-
struction of an ADT calculus leads to the desired state
of low coupling and high cohesion.

3.2. A complexity-theoretic metric

One branch of computational complexity theory in-
volves deriving operation counts or equivalent time es-
timates for the completion of various computing tasks.
Search algorithms comprise a commonly studied task.
Many of the resulting estimates take the form of poly-
nomials in some measure of the problem size such as
the number of items in the list being searched. Rou-
son et al. [14] applied this approach to the bug search
process, estimating that the average number of lines
searched to find all bugs in a traditional, procedural
code λ lines long with globally shared data:

λsearched = rλ
1
2

(
λ

2
− 1

)
, (5)

where r is the expected defect rate measured in de-
fects per line. Defect rates have been determined em-
pirically in commercially released scientific software
[6] and non-scientific software [1].

The rλ factor in equation (5) represents the ex-
pected number of defects in the entire project, while
the remaining factor represents the estimated num-
ber of lines searched to find a single defect. The lat-
ter quantity resulted from analyzing a chronological
code listing wherein every line that executes before the

symptom of a problem presents itself is listed before
the symptomatic line. With the symptom occurring at
λ/2 on average, causality confines the bug to the pre-
ceding λ/2 − 1 lines. The bug search algorithm in-
volves tracing backwards from this line until the bug
is found. On average, this search will terminate at line
(λ/2 − 1)/2.

The aforementioned bug search algorithm has the
virtue of being easy to analyze but the vice of not re-
sembling what most programmers do. A more practical
search algorithm might resemble the bisection method
[4]:

1. Bracket the suspected offending code with state-
ments that verify the satisfaction of necessary
constraints. In the most rudimentary cases, the
verification might simply involve visual inspec-
tion of output. A properly chosen set of con-
straints will be satisfied at the beginning of the
code segment but not at the end.

2. Bisect the code segment and insert a verification
statement at the midpoint.

3. Form the next segment from the code between
the midpoint and the end point at which the result
is the opposite of the midpoint result. For exam-
ple, if the verification passes at the midpoint, the
next segment lies between the midpoint and the
end point.

This process can be repeated until the segment is re-
duced to a single line of code. That line is the first place
where the necessary constraint is violated. Figure 2
illustrates two iterations of the bisection bug search
method starting from an initial segment encompassing
all λ lines of the code.

The number of lines λn in the nth segment so-
constructed provides a measure of the maximum dis-
tance between the lines being tested (the end points nth
segment) and the bug. Since the bisection methods cuts
this number in half at each iteration, the maximum dis-
tance from the bug at iteration n is:

λn =
λ

2n , (6)

where the initialize segment size has been set equal to
the entire source code length λ. Such a bug search con-
verges when the code segment reaches a single line,
which happens after

n = log2 λ (7)
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Fig. 2. Bisection bug search algorithm: “true” indicates the location of a successful verification; “false” indicates the location of a failed verifica-
tion.

iterations. At the beginning of the bisection search
(n = 0), two lines are checked, those being the first
and last lines of the suspect code. At each subsequent
iteration, one new line is checked, that being the mid-
point line. Thus, the search for all bugs terminates after

λsearched = rλ(2 + log2 λ) (8)

lines, or asymptotically O(λ log2 λ) lines.
Given sufficient insight into the structure of the

source code, the programmer can likely make an in-
formed guess about the bug location and thereby re-
duce the above estimate by starting with a code seg-
ment significantly shorter than the entire program
length. An important example presents itself in simu-
lation code based on an ADT calculus. With strict ad-
herence to the object-oriented philosophy of data pri-
vacy, only the λclass lines in a given class have access
to the data that class encapsulates. Any erroneous val-
ues observed in private data must have been set by one
of the p procedures in that class. This very nearly lim-
its to the search to those procedures. Although occa-
sional excursions outside this class are required to un-
derstand the flow of control and ensure that correct data
are being supplied to the class, the author’s experience

suggests these excursions are short and simple due to
the simplicity of the expressions that generate the call
tree and their close resemblance to the mathematical
expressions from which they are derived.

Following Rouson et al. [14], it proves useful to fac-
tor λclass into the product of the number of procedures
p in the class and the average procedural line density ρ
defined so that:

λclass ≡ ρp. (9)

Two reasons motivate this factoring. First, review-
ing Fig. 1 shows that each class that describes a
single-physics abstraction extends the integrable_
model abstract class and, therefore, implements the
same procedures: a scalar/object multiplication op-
erator “∗”, an object/object addition operator “+”,
a defined assignment “=”, and a time differentiator
“d_dt”. This holds p constant at 4 across the project
even as the number of classes grows to incorporate new
physics.

Second, the algorithm implemented inside many of
the above operators is very nearly the same. For each
class, the multiplication operator multiplies an object’s
state vector by a constant, while the “+” operator adds
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the state vectors of two objects, and the assignment op-
erator “=” copies, or in some cases overwrites, an ob-
ject’s state vector. These statements must be true for
each class for the time advancement code from the pre-
vious section to work. Since the algorithm is the same
for each class, the number of lines required to express
the algorithm will be very nearly the same. Hence,
ρ remains very nearly constant across the project. This
leads to rewriting Eq. (8) as:

λsearched = rρp[2 + log2(ρp)] (10)

and to the assertion that λsearched very nearly repre-
sents a constant independent of the size of the overall
project.

3.3. Information-theoretic metrics

Information theory offers a third avenue for analyz-
ing an ADT calculus. In his seminal paper on on the
information theory, Shannon [19] quantified the infor-
mation content and the limits thereof for telecommuni-
cation signals. It seems reasonable then to build upon
Shannon’s foundation to describe the content in other
types of communications such as communications be-
tween developers. Of interest here is the amount of in-
formation developers communicate in supplying new
classes that extend the capability of a multiphysics
framework of the type described in Fig. 1. In OOP,
the minimum information each developer must pro-
vide is the interface to that developer’s new class.
At the top layer in the class model of Fig. 1, in-
tegrable_model mandates the minimum interface
that dusty_plasma must implement in order to be
integrated forward in time.

Shannon [19] reasoned as follows about the set of
all possible messages that can be transmitted between
two locations (two developers in the present case):

If the number of messages in the set is finite then
this number or any monotonic function of this
number can be regarded as a measure of the infor-
mation produced when one message is chosen from
the set, all choices being equally likely.

He went on to choose the logarithm as the monotonic
function because it satisfies several constraints that
match our intuitive understanding of information. Con-
sider his expression for the information entropy:

H ≡ −
N∑

i=1

pi log pi, (11)

where pi is the frequency of occurrence of the ith to-
ken (e.g., a character or keyword) in some large sample
representative of the domain of interest and where N
is the number of unique tokens. Taking all choices (to-
kens) as equally likely leads to pi = 1/N and, there-
fore,

H = log N. (12)

Now consider again the following two lines from the
time integration code of Section 2.2 and Appendix:

class(integrable_model) :: integrand

and

integrand = integrand &
+ integrand%d_dt()*dt

The dynamic type integrable_model must be
resolved to an actual type at runtime. That actual type
must extend the parent integrable_model type
and implement each of the parent’s deferred-binding
type-bound procedures. An example of such an actual
type using the dusty plasma application of Fig. 1 fol-
lows:

type, extends(integrable_model) :: &
dusty_plasma

private
type(particle) dimension(:), &

allocatable:: particlePuppet
type(magnetofluid) , &

allocatable:: plasmaPuppet
contains

procedure, public :: d_dt &
=> dDustyPlasma_dt

procedure, public :: add &
=> add_dusty_plasma

procedure, public :: multiply &
=> multiply_dusty_plasma

procedure, public :: assign &
=> assign_dusty_plasma

end type atmosphere

If dusty_plasma is the first actual type to ex-
tend integrable_model, then there exists no am-
biguity in the meaning of the two time integration lines
above. With only one possible interpretation, N = 1,
H = 0, and the developer communicates no new infor-
mation. She simply makes the code sufficiently com-
plete to compile and run.

Rouson et al. [14] used an example in which a
class named atmosphere extended integrable_
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model. Were this to be a second class available in ad-
dition to dusty_plasma, then atmosphere would in-
crease N to 2. Choosing base 2 for logarithm (which is
equivalent to choosing the units in which information
content is expressed), the atmosphere developer
has added log2 2 = 1 bit of information. More gen-
erally, any developer adding a new integrable_
model descendant adds log2(N + 1) − log2(N ) ≡
log2((N + 1)/N ). Furthermore, since the number of
classes is countable, N must be an integer, so the jump
from log2(N ) to log2(N + 1) represents the minimum
amount of new information possible. This reflects the
ease with which new classes are added to the frame-
work at the highest levels of abstraction.

At lower levels such as the particle and
magnetofluid class, the interfaces remain very
similar to that specified at the top level because the
puppeteer delegates most type-bound procedure calls
to its puppets. The one exception relates to the role the
puppeteer places in mediating inter-abstraction com-
munications. That shows up in the interfaces of the
puppets as additional arguments that must be passed to
the d_dt() procedure of a given puppet and as type-
bound procedures on other puppets that supply the data
for those arguments. Nonetheless, the frequency of oc-
currence of the various keywords, keyword patterns
and even generic procedure names (for example, the
operator symbols and names) will be quite high. This
ultimately suggests that the growth in information en-
tropy H will typically be very slow as new single-
physics classes are added as well.

4. Discussion

While the author believes the aforementioned argu-
ments to be quite strong in favor of ADT calculus, pru-
dence suggests examining some of the pitfalls as well.
The outlined approach relies heavily on defined assign-
ments and operators. It has frequently been noted in the
literature that operator overloading is “syntactic sugar”
– that is a fundamentally unnecessary construct that
can always be resolved into a set of non-overloaded di-
rect procedure invocations as described in Section 3.1.
The author finds this argument unpersuasive since this
can be said of most programming constructs. All high-
level programming languages are syntactic sugar that
could be, and ultimately are, resolved into machine
language instructions. The more compelling question
is what are the tradeoffs in using a particular notation.
References [14,15] describe some of the performance
and memory management tradeoffs of ADT calculus.

One tradeoff with operator overloading is that one
must balance the seemingly transparent notation with
the ultimately opaque computation it can be used to
mask. One can insert computations that bear little re-
semblance to one’s intuitive understanding of the oper-
ator’s symbol. The author has encountered the need for
such computations in trying to write memory-leak-free
code using defined assignments and operators in earlier
generations of Fortran 95 compilers. Those compiler
generations did not have final procedures (known as
destructors in some languages) or garbage collection.
In the absence of these constructs (and in the presence
of some compiler-induced memory leaks), one must
resort to schemes that tag certain objects as temporary
(ripe for deletion), while tagging other objects as per-
sistent (protected from deletion) [16]. The way such
tags are handled inside defined assignments and op-
erators bears no resemblance to the usual meaning of
the operators outside of this context. Although neces-
sary in this case to avoid fatal build-up of dynamically
allocated memory, this type of programming seems
best avoided whenever possible. Fortunately, with the
new automatic memory management features and the
new final procedure construct in Fortran 2003, at least
the above manual memory management is no longer
needed.

Finally, although this article emphasizes slightly
more rigorous analyses of software architecture than is
common in scientific software development, even de-
sign metrics that appear to be more sophisticated than
SLOC are not necessarily so. Musa et al. [11] showed
that most of the complexity metrics that had been stud-
ied up to 1986 exhibited a high correlation with SLOC.

5. Conclusions

Three avenues have been explored for analyzing an
increasingly common approach to object-oriented sci-
entific programming. That approach involves the use of
defined assignments and operators to construct an ab-
stract data type calculus. Such a calculus facilitates the
writing of software expressions that closely mirror the
blackboard expressions from which they are derived.

The dusty plasma class model provides a setting
within which to study an ADT calculus. Since that
class model was inspired by design patterns, the first
avenue of exploration involved two OO design met-
rics commonly targeted by patterns: cohesion and cou-
pling. In this setting, the calculus generates the desir-
able result of high cohesion and coupling.



www.manaraa.com

338 D.W.I. Rouson / Towards analysis-driven scientific software architecture

From the vantage point of computational complex-
ity theory, the bisection method reduces the number of
lines searched in a code with λ total lines from O(λ2) in
a previous study to O(λ log2 λ). Furthermore, the lat-
ter estimate becomes nearly independent of the overall
code size in the context of using an ADT calculus to
add new physics to a multiphysics simulation package.

Within the framework of information theory, an
ADT calculus can be seen to simplify developer com-
munications. It does so by demonstrating that the the
information a new developer communicates by extend-
ing the abstract base type to create a new puppeteer
(multiphysics aggregator and mediator) is one bit. Ad-
ditionally, the amount of information that must be com-
municated to add new single-physics models an ex-
isting multihphysics package proves quite small since
much of the interface is the same for each class except
for the coupling terms and the type-bound procedures
that compute them.

Finally, this article addresses some of the arguments
against of constructing an ADT calculus. While opera-
tor overloading is often referred to as “syntactic sugar”
that can be otherwise represented without a special lan-
guage facility, this article argues that this not a com-
pelling criticism insofar as similar statements can be

made about every construct in a high-level language.
Likewise, while acknowledging cases in which it be-
comes necessary to do computations inside an operator
that bear little resemblance to one’s intuitive definition
of the operator, the instances in which the author has
accounted these were primarily with an older genera-
tion of compilers. It would seem that sufficient disci-
pline could eliminate opaque uses for operators in most
cases and that similarly opaque calculations could be
done inside misleadingly named procedures even in the
absence of defined operators.
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Appendix

module integrable_model_module
implicit none
private
public :: integrate

type ,abstract ,public :: integrable_model
contains

procedure(time_derivative ) ,deferred :: d_dt
procedure( symmetric_operator ) ,deferred :: add
procedure( symmetric_assignment) ,deferred :: assign
procedure(asymmetric_operator ) ,deferred :: multiply
generic :: operator(+) => add
generic :: operator(*) => multiply
generic :: assignment(=) => assign

end type integrable_model
abstract interface

function time_derivative(this) result(dState_dt)
import :: integrable_model
class(integrable_model) ,intent(in) :: this
class(integrable_model) ,allocatable :: dState_dt

end function time_derivative
function symmetric_operator(lhs,rhs) result(op_result)

import :: integrable_model
class(integrable_model) ,intent(in) :: lhs,rhs
class(integrable_model) ,allocatable :: op_result
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end function symmetric_operator
function asymmetric_operator(lhs,rhs) result(op_result)

import :: integrable_model
class(integrable_model) ,intent(in) :: lhs
class(integrable_model) ,allocatable :: op_result
real ,intent(in) :: rhs

end function asymmetric_operator
subroutine symmetric_assignment(lhs,rhs)

import :: integrable_model
class(integrable_model) ,intent(in) :: rhs
class(integrable_model) ,intent(inout) :: lhs

end subroutine symmetric_assignment
end interface

contains
subroutine integrate(integrand,dt)

class(integrable_model) :: integrand
real ,intent(in) :: dt
integrand = integrand + integrand%d_dt*dt

end subroutine
end module integrable_model_module
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